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Abstract—Collaborative filtering is an effective and widely
used recommendation approach by applying the user-item rating
matrix for recommendations, however, which usually suffers from
cold-start and sparsity problems. To address these problems,
hybrid methods are proposed to incorporate auxiliary informa-
tion such as user/item profiles to collaborative filtering models;
Cross-domain recommendation systems add a new dimension
to solve these problems by leveraging ratings from other do-
mains to improve recommendation performance. Among these
methods, deep neural network based recommendation systems
achieve excellent performance due to their excellent ability in
learning powerful representations. However, these cross-domain
recommendation systems based on deep neural network rarely
consider the uncertainty of weights. Therefore, they maybe lack
of calibrated probabilistic predictions and make overly confident
decisions. Along this line, we propose a general cross-domain
recommendation framework via Bayesian neural network to
incorporate auxiliary information, which takes advantage of
both the hybrid recommendation methods and the cross-domain
recommendation systems. Specifically, our framework consists of
two kinds of neural networks, one to learn the low dimensional
representation from the one-hot codings of users/items, while the
other one is to project the auxiliary information of users/items
into another latent space. The final rating is produced by
integrating the latent representations of the one-hot codings of
users/items and the auxiliary information of users/items. The
latent representations of users learnt from ratings and auxiliary
information are shared across different domains for knowledge
transfer. Moreover, we capture the uncertainty in all weights
by representing weights with Gaussian distributions to make
calibrated probabilistic predictions. We have done extensive
experiments on real-world data sets to verify the effectiveness
of our framework.

Keywords-Cross-domain learning, Recommendation systems,
Bayesian neural network

I. INTRODUCTION

With the explosively growing amount of online informa-
tion, recommendation system (RS) plays an essential role in
alleviating information overload problem and is widely used
by many websites, e.g., Amazon, YouTube and Netflix. In
recent years, RS has attracted a vast amount of interest, and
a great deal of research has been proposed to improve the
recommendation performance [1], [2]. Collaborative filtering
(CF) is a popular and widely used recommendation approach
in which the preference of a user on an item is predicted based

on the preferences of other users with similar interest [3]–
[6]. However, the recommendation quality of CF heavily
depends on the user-item rating matrix, which is often highly
sparse in real-world situations, leading to the degradation of
recommendation performance. Moreover, CF based on the sole
rating matrix is not applicable for newly joined users or items,
which is known as the cold-start problem.

To address these problems, there are two pipelines of rec-
ommender systems, i.e., hybrid recommendations and cross-
domain recommendations. Hybrid recommendation methods
alleviate the data sparsity and cold-start problems and enhance
recommendation performance by incorporating the auxiliary
information such as items’ profiles or users’ profiles/social
networks [7]–[10] as regularization terms. Deep learning tech-
niques recently show great potential for learning effective
representations from features and deliver state-of-the-art per-
formance in many application [11], [12]. So recently some
hybrid recommendation systems adopt deep neural networks
to learn latent representation from auxiliary information and
have achieved excellent performance in single-domain recom-
mendation tasks [5], [13]–[16].

On the other side, cross-domain recommendation systems
(CDRS) are also proposed to address the sparsity problem
by leveraging the rating information from other domains to
enhance the prediction on the target domain [7], [17]. Existing
CDRS can be roughly classified into two major categories.
In the first category, patterns learned from the source do-
main are directly transferred to the target domain to improve
recommendation accuracy in the target domain [18]–[20].
For example, codebook transfer (CBT) [18] which transfers
user-item rating patterns from a dense rating matrix in a
source domain to a sparse rating matrix in a target domain.
And rating-matrix generative model (RMGM) [19] considers
the cluster-level rating patterns as potential candidates to be
transferred from the source domain. These methods usually
focus on transferring knowledge from a single source domain
to a target domain. The second category of methods learn the
models from the source and target domains simultaneously,
and expect that these domains can complement each other [2],
[7], [17], [21], [22]. In this case, there is no distinction between



the source domain and the target domain, i.e., both domains
are treated equally. All domains work in a collective way.
One of the representative work is EMCDR [2] which cap-
tures the nonlinear mapping function between source domain
and target domain with a multi-layer perceptron. However,
most CDRS only transfer patterns across domains and don’t
incorporate the extra auxiliary information from users or
items. Therefore, when the newly joined user or item does
not exist in any domain, it is difficult for these traditional
CDRS to make recommendation. To address this cold-start
problem, MVDNN [23] uses a deep learning approach to
map users’/items’ auxiliary information to a latent space and
jointly learns the latent factors of users/items across different
domains. CCCFNet [24] is a cross-domain recommendation
system based on neural network, which introduces items’
auxiliary information to collaborative filtering with neural
network. But it does not incorporate the auxiliary information
of users, thus it is difficult for CCCFNet to recommend items
to newly joined users.

Although some state-of-the-art CDRS like MVDNN and
CCCFNet have achieved good performance by using deep
learning to learn powerful representations from rich auxiliary
information, they obtain point estimates of the weights by op-
timizing a objective function, which may lead to make overly
confident predictions without considering the uncertainty of
weights and may be prone to over-fitting the data when the
network is too complex. To overcome these problems, the
Bayesian deep learning is proposed [25]. But exact Bayesian
inference on the weights of a neural network is intractable as
the number of parameters is very large and the function form
of a neural network does not lend itself to exact integration.
Bayes by Backprop (BBB) [26] was proposed to take a
variational approximation to exact Bayesian updates.

To this end, we propose a General Cross-domain framework
via BAyesian Neural network (namely GCBAN) to incorporate
the auxiliary information from both users and items, which can
take advantage of both hybrid recommendation approach and
cross-domain approach. Specifically, our framework consists
of two kinds of neural networks, one to learn the low dimen-
sional representation from the one-hot codings of users/items,
while the other one is to project the auxiliary information
of users/items into another latent space. The final rating is
produced by integrating the latent representations of the one-
hot codings of users/items and the auxiliary information of
users/items. The latent representations of users learnt from
ratings and auxiliary information are shared across different
domains for knowledge transfer. Furthermore, we capture the
uncertainty of all weights which are represented by Gaussian
distributions with BBB. Finally, We have done extensive
experiments on real-world data sets to verify the effectiveness
of our framework. Note that, the user set are shared by all
domains on our experimental datasets.

II. PRELIMINARY KNOWLEDGE

A. Notations and Problem Description
The frequently used notations and denotations are shown in

Table I. Actually, our model is a general framework, which

TABLE I: Notations and Denotations
Symbol Description

X(1), X(2) The one-hot encoding and attribute matrix of items in D1

X(3), X(4) The one-hot encoding and attribute matrix of users
X(5), X(6) The one-hot encoding and attribute matrix of items in D2

r(1), r(2) The real rating vector in D1,D2

W (i,j), b(i,j) The weight matrix and bias vector
h(1), h(2) The attribute latent vector and latent factor of items in D1

h(3), h(4) The attribute latent vector and latent factor of users
h(5), h(6) The attribute latent vector and latent factor of items in D2

y(1),y(2) The learned rating vector in D1,D2

µ, ρ The parameters of variational posterior distributions
δ0 The standard deviation of the likelihood distribution
γ0 The standard deviation of the prior distribution
� The element-wise multiplication
∪ Union of two sets

can deal with multiple domains for recommendations (e.g.,
any number of source domains and any number of target
domains). For concision, in this paper we only focus on
two domain recommendations, i.e., one for source domain
and the other one for target domain. Given two domains
(domain 1 denoted as D1 and domain 2 denoted as D2).
There are T (1) ratings in D1, T (2) ratings in D2, N (o)

users (two domains share the same set of users), M (o,1)

items in D1, M (o,2) items in D2, N (a) attributes of users,
M (a,1) attributes of items in D1 and M (a,2) attributes of
items in D2. Each rating in D1/D2 consists of five parts: the
attribute vector and the one-hot encoding vector of the user,
the attribute vector and the one-hot encoding vector of the item
and the rating value, denoted as {x(3)

t ,x
(4)
t ,x

(1)
t ,x

(2)
t , r

(1)
t },

t ∈ {1, · · · , T (1)}. Similarly, each rating in D2 is denoted
as {x(3)

T (1)+t
,x

(4)

T (1)+t
,x

(5)
t ,x

(6)
t , r

(2)
t }, t ∈ {1, · · · , T (2)}. Our

goal is to propose a new cross-domain framework to make full
use of all the data for making accurate recommendations.

B. MVDNN

MVDNN [23] is a multi-view deep learning approach for
cross-domain in recommendation systems. It uses a deep
learning approach to map users and items to a latent space
where the similarity between users and their preferred items
is maximized, and the items’ features are jointly learned from
different domains. In this work, we propose our cross-domain
framework motivated by MVDNN, and next we first briefly
review the MVDNN model.

item attribute 		𝒙(*) user attribute		𝒙(,) item attribute		𝒙(-)

user attribute latent factor 𝒉(,) item attribute latent factor 𝒉(-)
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Fig. 1: MVDNN

In MVDNN, users’ features can be seen as a view and items’
attributions are regarded as another view. The architecture of
the MVDNN for two domains is shown in Fig. 1, which
can be easily extended to multiple domains. The pivot view
is the user view denoted as X(3) and other two auxiliary



views from D1 and D2 are represented as X(1) and X(5)

respectively. MVDNN uses several non-linear mapping layers
to project the input x(1) /x(3)/x(5) into shared semantic space
h(1)/h(3)/h(5). Let k(3), k(1)and k(5) represent the number of
layers in the neural network of users, items in D1 and items
in D2, l(i,j) (i ∈ {1, 3, 5}, j = 1, · · · , k(i)− 1) denotes the j-
th hidden layer, W (i,j) and b(i,j) represent the weight matrix
and bias term of the j-th layer in i-th network, h(i) denote
the final output latent representations:

l(i,1) = f(x(i)W (i,1) + b(i,1)),

l(i,j) = f(l(i,j−1)W (i,j) + b(i,j)),

h(i) = f(l(i,k
(i)−1)W (i,k(i)) + b(i,k

(i))),

i ∈{1, 3, 5}, j = 2, · · · , k(i) − 1,

(1)

where f(·) represents the non-linear activation function. Then
we can obtain the learnt rating y(1)/y(2) from D1/D2:

y(1) = eα1 cos(h(3),h(1)), y(2) = eα2 cos(h(3),h(5)). (2)

The real rating value is r(1) / r(2) and the objective function
is to minimize the reconstruction error between the real ratings
and learned ratings. The objective function can be formulated
as follows:

L =

T (1)∑
t

(y
(1)
t − r

(1)
t )2 +

T (2)∑
t

(y
(2)
t − r

(2)
t )2. (3)

III. A GENERAL CROSS-DOMAIN RECOMMENDATION
FRAMEWORK VIA BAYESIAN NEURAL NETWORK

As introduced above, MVDNN only uses the auxiliary
information and does not take the collaborative filtering into
account. In this way, it doesn’t take advantage of relevance
between users and items. What’s more, it doesn’t consider the
uncertainty of weights in the network and only can obtain
point estimates of the weights, which may lead to the lack of
calibrated probabilistic predictions and make overly confident
predictions. So we propose a new recommendation framework
GCBAN to incorporate the auxiliary information from both
users and items.

Domain 1 Domain 2
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Fig. 2: GCBAN

The architecture of our model is illustrated in Fig. 2. For
D1, a multi-layer perceptron (MLP) is adopted to learn a
common low dimensional space for the one-hot encodings
of users and items. Then these two kind of latent represen-
tations are concatenated into a new vector v(1) by element-
wise multiplication. Next, the new vector v(1) is fed into a
one-layer perception to produce a value q(1). Similarly, the
attributes of users and items are mapped into another shared

latent space with another MLP. To incorporate the auxiliary
information from users and items, these two kinds of latent
factors of attributions are concatenated into a new vector u(1)

by element-wise multiplication. Next, the new attribute vector
u(1) is fed into a one-layer perceptron to produce a value p(1).
Finally, p(1) and q(1) are combined to obtain the final rating
y(1). The recommendation process in D2 is similar to D1.
These domains share the same user network so that they can
complement each other. Specially, we take the uncertainty of
all weights and biases in whole network into account to make
calibrated probabilistic predictions and avoid over-fitting.

To capture the uncertainty of all weights and biases, we
suppose all weights and biases obey some probability distri-
bution. Firstly, we impose Gaussian prior for all weights and
biases as follows:

p(W (i,j)|γ0) ∼
∏
m

∏
d

N (W
(i,j)
m,d |0, γ

2
0),

p(b(i,j)|γ0) ∼
∏
d

N (b
(i,j)
d |0, γ2

0),

i ∈ {1, · · · ,6}, j = 2, · · · , k(i) − 1,

(4)

where N (·) denotes the Gaussian distribution, the mean is 0.
Similarly to Eq.(1), we can obtain the latent factors h(i), i ∈

{1, · · · , 6} in the same way. In GCBAN, we use f =
max(0, x) as the activation function ReLu in each layer. The
latent representations h(1) and h(3) are projected into a new
vector u(1) by element-wise multiplication and the new vector
u(1) is mapped into a value p(1) by a one-layer perceptron,
and we can get v(1) and q(1) in a similarly way: v

u(1) = h(1) � h(3), p(1) = f(u(1)W p(1) + bp
(1)

),

v(1) = h(2) � h(4), q(1) = f(v(1)W q(1) + bq
(1)

),
(5)

In the same way, we can obtain p(2) and p(2) in D2. Also,
we impose Gaussian prior for all these weights and biases as
follows:

p(W p(z) |γ0) ∼
∏
m

∏
d

N (W p(z)

m,d |0, γ
2
0),

p(bp
(z)

|γ0) ∼
∏
d

N (bp
(z)

d |0, γ2
0),

p(W q(z) |γ0) ∼
∏
m

∏
d

N (W q(z)

m,d |0, γ
2
0),

p(bq
(z)

|γ0) ∼
∏
d

N (bq
(z)

d |0, γ2
0), z ∈ {1, 2}.

(6)

Next, we combine p(1) and q(1) to produce the final predicted
rating value y(1) in D1, and y(2) in D2 can be obtained in the
similar way as follows:

y(1) = p(1) + q(1), y(2) = p(2) + q(2). (7)

For simplicity, we redefine all wights and biases in the network
as Φ and the input data in all domains as X:

W = {W (i,j)}i=1,··· ,6,j=1,··· ,k(i) ∪ {W p(z) ,W q(z)}z=1,2,

b = {b(i,j)}i=1,··· ,6,j=1,··· ,k(i) ∪ {bp
(z)

, bq
(z)

}z=1,2,

Φ = W ∪ b, X = {X(i)}i=1,··· ,6.

(8)

The objective is to make the predicted rating value y(1)/y(2)
close to the real rating value r(1)/r(2), so we define the
likelihood function as follows:



p(y
(1)
,y

(2)|X,Φ, δ0, γ0) =

T (1)∏
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(1)
t |y

(1)
t , δ

2
0)

T (2)∏
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N (r
(2)
t |y

(2)
t , δ

2
0),

(9)
Finally, we can get the posterior distribution of Φ as follows:

p(Φ|X,y(1),y(2), δ0, γ0) =
p(y(1),y(2)|X,Φ, δ0, γ0)p(Φ|γ0)

p(y(1),y(2)|X)
(10)

where p(y(1),y(2)|X) is a normalization constant.
However, the function is too complex to lend itself to exact

Bayesian Inference. So, it is difficult to calculate the posterior
distribution directly. To address this problem, we introduce
BBB to find the approximate posterior distribution. BBB
adopts variational inference as optimization which finds the pa-
rameters of a approximate posterior distribution on the weights
by minimizing the Kullback-Leibler (KL) divergence with
the true Bayesian posterior. q(Φ|θ) denotes the approximate
posterior distribution of Φ where θ is the parameter of the ap-
proximate posterior distribution. We suppose the approximate
posterior distribution is still a Gaussian distribution, in this
case, θ = (µ, σ) denotes the mean and the standard deviation
of the Gaussian distribution. Therefore, the optimal θ∗ can be
obtained by optimizing the following objective:

θ∗ =argmin
θ

KL[q(Φ|θ)||p(Φ|X,y(1),y(2), δ0, γ0)]

= argmin
θ

∫
q(Φ|θ) log q(Φ|θ)

p(Φ|γ0)p(y(1),y(2)|Φ,X, δ0)
dΦ

=argmin
θ

Eq(Φ|θ)[log q(Φ|θ)− log p(Φ|γ0)]

− Eq(Φ|θ)[log p(y(1),y(2)|Φ,X, δ0)].
(11)

However, we can’t calculate the derivative of the optimiza-
tion function (11) because the derivative of an expectation
can’t be calculated directly. According to [26], we parame-
terize the σ as σ = log(1 + exp(ρ)) and then σ will always
be non-negative. The parameters of the approximate posterior
distribution can be denoted as θ = (µ, ρ). The objective
function (11) can be re-written as the following formulation:
H(Φ|θ) = log q(Φ|θ)− log p(Φ|γ0)− log p(y(1),y(2)|Φ,X, δ0),

θ∗ = argmin
θ

Eq(Φ|θ)[H(Φ|θ)].
(12)

Then we can get the objective function above is approximately
equal to the following function:

∂EH(Φ|θ)[H(Φ, θ)]

∂θ

≈ 1

S

∂H(c(θ, ε(s)), θ)

∂c(θ, ε(s))

∂c(θ, ε(s))

∂θ
+
∂H(c(θ, ε(s)), θ)

∂θ
,

(13)

where ε(s) denotes the Monte Carlo sample drawn from the
distribution q(ε(s)).

IV. EXPERIMENTS

In this section, we evaluate our proposed model GCBAN on
real-world datasets and compare it with several state-of-the-art
cross-domain algorithms and single domain methods.

A. Data Description
There are three series of datasets in our experiments:

Movie100k, Movie1m and Douban, and the detailed informa-
tion of these three datasets is summarized in Table II.

Movie100k and Movie1m are two open datasets from
GroupLens which include user features, user id, item features,
item id and ratings. The rating ranges from 1 to 5. The user
features contains user’s age, gender, profession, etc. And item

feature includes item’s genres. Id information is encoded into
a vector by one-hot encoding. We further split Movie100k
and Movie1m into two domains according to the type of
movie. Movies with high genre similarity will be divided into
a same domain. Movie100k-D1 (Movie100k-D2) represents
the domain 1 (domain 2) from Movie100k, and Movie1m-D1
and Movie1m-D2 are named similarly.

Douban is a well known Chinese social network plat-
form. The Douban dataset includes three recommendation
tasks like movie (Douban-Movie), music (Douban-Music) and
book (Douban-Book) recommendations. The user’s features
includes gender, age, place of residence, tag, etc. The features
of movies consist of movie’s name, director, issuer, genre,
language, etc. Musics’ features consist of music’s name,
singer’s name, genre, publisher, etc. The features of books
include publisher country, category, etc.

Finally, we construct eight cross-domain recommendation
tasks: Movie100k-D1 
 Movie100k-D2; Movie1m-D1 

Movie1m-D2; Douban-Movie 
 Douban-Music; Douban-
Music 
 Douban-Book. We train two domains simultaneously
and evaluate the test data from these two domains. Douban-
Music has two results because it exists in two tasks, and we
only report the best results for all algorithms.

TABLE II: Statistics of datasets.
Dataset Movie100k-D1 Movie100k-D2 Movie1m-D1 Movie1m-D2 Douban-Movie Douban-Music Douban-Book

Users 925 925 5,959 5,959 13,909 13,909 13,909
Items 729 950 1,659 2,044 57,199 49,659 28,163
Rating 52,545 45,369 535,896 448,093 1,220,836 191,283 106,189
Density 0.0779 0.0516 0.0542 0.0368 0.0015 0.0003 0.0003

B. Competitors and Implementation Details

For evaluating, we use Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE), which are the most
commonly used evaluation metrics in recommendation sys-
tems. And we compare our model GCBAN with four cross-
domain recommendation competitors and two single-domain
recommendation baselines.

- MVDNN [23]: it is a deep learning based cross-domain
recommendation system to map users’ and items’ aux-
iliary information to a latent space where the similarity
between users and their preferred items is maximized.

- CCCFNet [24]: it is a cross-domain recommendation sys-
tem which combines collaborative filtering and content-
based filtering in a unified framework. But it only intro-
duce the auxiliary information from items without users.

- NeuCDCF1 : it is a neural cross-domain collaborative
filtering without introducing auxiliary information.

- CLFM [27]: it is a cross-domain recommendation algo-
rithm via cluster-level latent factor model.

- DeepMF: it is a novel matrix factorization model with
neural network architecture [5].

- PMF: it is a probabilistic matrix factorization model [4].
GCBAN is implemented based on Tensorflow. We use

standard gaussian distribution to initialize parameters µ and
ρ and use the optimization method Adam with learning rate
0.0005. Hyper-parameters γ0 and δ0 are both sampled from

1https://github.com/mvijaikumar/NeuCDCF.



the integer set {1e-5, 1e-4, 1e-4, 1e-3, 1e-2, 1e-1, 1e-0},
the dimension of latent representations da for user and item
attributes and the dimension of latent representations do for
user and item one-hot codings are both sampled from the
integer set {5, 10, 15, 20, 25}. Since the dimension of items’
attributes is almost the same size among different domains,
we set the dimension of items’ attributes from all domains
the same. And the Monte Carlo sample times S is set to 3.
For NeuCDCF, we set the parameters and the structure of the
network as the default setting in the source code. For MVDNN
and CCCFNet, we adopt two-layer networks as the same
with our model GCBAN. For DeepMF, we adopt two-layer
networks as suggested in its original paper. The dimension of
the latent factor is chosen from the integer set {8, 16, 32, 64}
for each dataset according to its original paper. For CLFM, the
number of user and item clusters K and L in both domains
are set as K = 30 and L = 50 and the dimension of shared
common space is set to 40 which are suggested according to
its original paper. Finally, the dimension of the latent factor is
chosen from the integer set {8, 16, 32, 64} for PMF. Because
CLFM needs to learn the shared cluster-level user-item rating
patterns firstly which demands a lot of time due to the high
computation complexity of cluster algorithms. So when deal
with the large-scale data which have many users and items
like Douban-Music and Douban-Book, CLFM returns no result
within 24 hours. Thus there is no result for CLFM in Douban.

C. Normal Experiments
In the normal experiments, we randomly divide the target

domain data into two parts where one for training and the
rest for testing. Specifically, we respectively sample 80%,
60%, 40% and 20% for training and the rest for test. The
average performance on five individual trials is recorded, and
all the results on three datasets are shown in Table III and
Figure 3. From these results, we have the following insightful
observations:
• GCBAN outperforms PMF and DeepMF, which indicates

that cross-domain method can take advantage of informa-
tion from related source domains.

• Neural network based cross-domain recommendation sys-
tems NeuCDCF, CCCFNet and GCBAN perform better
than the traditional cross-domain recommendation system
CLFM. The reason may be that neural network can learn
powerful representations. CCCFNet and GCBAN are
better than cross-domain recommendations like CLFM
and NeuCDCF on most datasets. The reason may be
that they introduce auxiliary information to enhance
the recommendation performance. Also, we observe that
MVDNN can not obtain satisfying performance on most
datasets. This might be the reason that although MVDNN
only learns the auxiliary information by neural networks
and does not take the collaborative filtering into account
to model the relevance between users and items.

• GCBAN achieves the best performance on these three
datasets. On the one hand, GCBAN performs better than
CLFM and NeuCDCF where we attribute to that GCBAN

learn the model from all the domains simultaneously
and these domains can complement each other. On the
other hand, GCBAN outperforms better than NeuCDCF,
MVDNN and CCCDNet. This may be the reasons, 1)
GCBAN takes the advantages of the neural network and
Bayesian framework which introduces the uncertainty
to models; 2) GCBAN infers an approximate posterior
under the Bayesian framework instead of a point estimate,
and makes more robust predictions with Bayesian model
averaging over the posterior.

• The sampled proportions for training are {0.8, 0.6, 0.4,
0.2}. Suppose the density of the original rating matrix is
α, it means that we do experiments with different sparsity
{1-0.8α, 1-0.6α, 1-0.4α, 1-0.2α}. Overall, GCBAN can
achieve the best results under different training sparsity,
which again validates the effectiveness of GCBAN.

TABLE III: The Detailed Results on Movie100k and Movie1m
Dataset Training Metrics PMF DeepMF CLFM NeuCDCF MVDNN CCCFNet GCBAN

Movie

80%
RMSE 0.9718 0.9278 1.0821 0.9209 1.1135 0.9643 0.9042

100k-D1

MAE 0.7523 0.7311 0.8904 0.7183 0.9257 0.7735 0.7137

60%
RMSE 1.0294 0.9379 1.0966 0.9329 1.1178 0.9838 0.9256
MAE 0.7990 0.7381 0.9132 0.7268 0.9340 0.7928 0.7312

40%
RMSE 1.1060 0.9500 1.1110 0.9554 1.1200 1.0119 0.9391
MAE 0.8600 0.7469 0.9288 0.7452 0.9432 0.8232 0.7433

20%
RMSE 1.1923 0.9913 1.1195 1.0166 1.1275 1.0497 0.9610
MAE 0.9301 0.7784 0.9367 0.7938 0.9471 0.8667 0.7674

Movie

80%
RMSE 1.0425 0.9580 1.0981 0.9616 1.1076 0.9782 0.9291

100k-D2

MAE 0.8133 0.7544 0.9033 0.7572 0.9162 0.7843 0.7333

60%
RMSE 1.0975 0.9633 1.1003 0.9726 1.1094 0.9924 0.9486
MAE 0.8557 0.7591 0.9058 0.7653 0.9239 0.7996 0.7493

40%
RMSE 1.1736 0.9812 1.1095 0.9975 1.1130 1.0191 0.9613
MAE 0.9152 0.7728 0.9200 0.7857 0.9273 0.8292 0.7611

20%
RMSE 1.2171 1.0339 1.1103 1.0569 1.1209 1.0543 0.9830
MAE 0.9544 0.8160 0.9216 0.8316 0.9379 0.8696 0.7828

Movie

80%
RMSE 0.8719 0.8860 1.094 0.8825 1.0783 0.8676 0.8502

1m-D1

MAE 0.6781 0.6953 0.6836 0.9115 0.8759 0.6785 0.6668

60%
RMSE 0.8924 0.9221 1.1092 0.8873 1.0852 0.8754 0.8631
MAE 0.6948 0.7207 0.9278 0.6875 0.8826 0.6881 0.6776

40%
RMSE 0.9172 0.9379 1.1211 0.8985 1.0856 0.8938 0.8796
MAE 0.7156 0.7381 0.9394 0.6976 0.8806 0.7088 0.6924

20%
RMSE 0.9588 0.9500 1.1306 0.9273 1.0981 0.9272 0.9051
MAE 0.7524 0.7469 0.9487 0.7229 0.9047 0.7376 0.7131

Movie

80%
RMSE 0.9024 0.9098 1.0846 0.9193 1.0740 0.8815 0.8675

1m-D2

MAE 0.7048 0.7151 0.8981 0.7171 0.8747 0.6949 0.6815

60%
RMSE 0.9159 0.9219 1.0856 0.929 1.0743 0.8970 0.8833
MAE 0.7171 0.7265 0.8987 0.7231 0.8791 0.7065 0.6948

40%
RMSE 0.9390 0.9285 1.0868 0.9360 1.0754 0.9113 0.9018
MAE 0.7381 0.7294 0.8997 0.7317 0.8809 0.7192 0.7104

20%
RMSE 1.0112 0.9553 1.0889 0.9652 1.0751 0.9411 0.9289
MAE 0.7944 0.7490 0.9012 0.7581 0.8887 0.7463 0.7333

D. Cold-start Experiments
To evaluate the prediction performance of recommendation

methods when they address the cold-start problem, we conduct
cold-start experiments. We respectively extract users and items
with corresponding feature information and rating records
from dataset and regard them as test datasets. The split
proportion of users and items is sampled from {0.2, 0.4, 0.6,
0.8}, and the results of RMSE are shown in Figure 4.

As we can see from Figure 4, GCBAN performs better
than MVDNN and CCCFNet. This is because our model
incorporates the auxiliary information from both users and
items and captures the uncertainty of the network. Especially,
we can find that GCBAN performs better than CCCFNet
in the cold-start problem of users. The reason may be that
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Fig. 3: The Comparison Results on Douban Dataset
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Fig. 4: New User and Item Problems

CCCFNet only introduces the auxiliary information of items,
thus it can not deal with cold-start problem of users. Also,
we can find GCBAN performs better than the single-domain
recommendation ones. We attribute it to that cross-domain
method can help transfer the knowledge from related source
domain and enhance the recommendation quality.

V. CONCLUSION

To flexibly integrate as much information as possible from
multiple sources for recommendation, we proposed a general
cross-domain framework via Bayesian neural network. In other
word, our model not only incorporates the auxiliary informa-
tion from both users and items but also transfers knowledge
from related source domains, which can take advantage of both
hybrid recommendation approach and cross-domain method.
Note that, the latent representations of users learnt from
ratings and auxiliary information are shared across different
domains for knowledge transfer. Moreover, we introduced
uncertainty to all weights which are represented by proba-
bility distributions in our neural networks to make calibrated
probabilistic predictions and avoid over-fitting. Finally, we
conducted extensive experiments on real-world data sets to
demonstrate the effectiveness of our model.
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